XGBoost是一种基于决策树的集成学习算法,它在处理结构化数据方面表现优异。相比其他算法,XGBoost能够处理大量特征和样本,并且支持通过正则化控制模型的复杂度。XGBoost也可以自动进行特征选择并对缺失值进行处理。
(相关资料图)
1、导入相关库
import org.apache.spark.ml.Pipeline;import org.apache.spark.ml.evaluation.RegressionEvaluator;import org.apache.spark.ml.feature.VectorAssembler;import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor};import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.SparkSession;
2、加载数据
SparkSession spark = SparkSession.builder().appName("XGBoost").master("local[*]").getOrCreate();DataFrame data = spark.read().option("header", "true").option("inferSchema", "true").csv("data.csv");
3、准备特征向量
String[] featureCols = data.columns();featureCols = Arrays.copyOfRange(featureCols, 0, featureCols.length - 1);VectorAssembler assembler = new VectorAssembler().setInputCols(featureCols).setOutputCol("features");DataFrame inputData = assembler.transform(data).select("features", "output");inputData.show(false);
4、划分训练集和测试集
double[] weights = {0.7, 0.3};DataFrame[] splitData = inputData.randomSplit(weights);DataFrame train = splitData[0];DataFrame test = splitData[1];
5、定义XGBoost模型
GBTRegressor gbt = new GBTRegressor() .setLabelCol("output") .setFeaturesCol("features") .setMaxIter(100) .setStepSize(0.1) .setMaxDepth(6) .setLossType("squared") .setFeatureSubsetStrategy("auto");
6、构建管道
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{gbt});
7、训练模型
GBTRegressionModel model = (GBTRegressionModel) pipeline.fit(train).stages()[0];
8、进行预测并评估模型
DataFrame predictions = model.transform(test);predictions.show(false);RegressionEvaluator evaluator = new RegressionEvaluator() .setMetricName("rmse") .setLabelCol("output") .setPredictionCol("prediction");double rmse = evaluator.evaluate(predictions);System.out.println("Root Mean Squared Error (RMSE) on test data = " + rmse);
以上就是Java语言中基于SparkML的XGBoost算法实现的示例代码。需要注意的是,这里使用了GBTRegressor作为XGBoost的实现方式,但是也可以使用其他实现方式,例如XGBoostRegressor或者XGBoostClassification。
import org.apache.spark.ml.Pipeline;import org.apache.spark.ml.evaluation.RegressionEvaluator;import org.apache.spark.ml.feature.VectorAssembler;import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor};import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.SparkSession;import java.util.Arrays;public class XGBoostExample { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("XGBoost").master("local[*]").getOrCreate(); // 加载数据 DataFrame data = spark.read().option("header", "true").option("inferSchema", "true").csv("data.csv"); data.printSchema(); data.show(false); // 准备特征向量 String[] featureCols = data.columns(); featureCols = Arrays.copyOfRange(featureCols, 0, featureCols.length - 1); VectorAssembler assembler = new VectorAssembler().setInputCols(featureCols).setOutputCol("features"); DataFrame inputData = assembler.transform(data).select("features", "output"); inputData.show(false); // 划分训练集和测试集 double[] weights = {0.7, 0.3}; DataFrame[] splitData = inputData.randomSplit(weights); DataFrame train = splitData[0]; DataFrame test = splitData[1]; // 定义XGBoost模型 GBTRegressor gbt = new GBTRegressor() .setLabelCol("output") .setFeaturesCol("features") .setMaxIter(100) .setStepSize(0.1) .setMaxDepth(6) .setLossType("squared") .setFeatureSubsetStrategy("auto"); // 构建管道 Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{gbt}); // 训练模型 GBTRegressionModel model = (GBTRegressionModel) pipeline.fit(train).stages()[0]; // 进行预测并评估模型 DataFrame predictions = model.transform(test); predictions.show(false); RegressionEvaluator evaluator = new RegressionEvaluator() .setMetricName("rmse") .setLabelCol("output") .setPredictionCol("prediction"); double rmse = evaluator.evaluate(predictions); System.out.println("Root Mean Squared Error (RMSE) on test data = " + rmse); spark.stop(); }}
在运行代码之前需要将数据文件data.csv
放置到程序所在目录下,以便加载数据。另外,需要将代码中的相关路径和参数按照实际情况进行修改。